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General formalism for inhomogeneous random graphs
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We present and investigate an extension of the classical random graph to a general class of inhomogeneous
random graph models, where vertices come in different types, and the probability of realizing an edge depends
on the types of its terminal vertices. This approach provides a general framework for the analysis of a large
class of models. The generic phase structure is derived using generating function techniques, and relations to
other classes of models are pointed out.
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I. INTRODUCTION

The concept of random graphs~RG! has recently become
the target of an increasing interest, as a tool for mode
various kinds of networks, arising e.g. in physics, biolog
and biophysics, as well as in social and informatio
technological structures.

The classical RG model@1–3# describes a homogeneou
sparse random graph of orderN, where each edge is ran
domly and independently realized with a fixed probabil
p5c/N. For large orders, there is a critical value ofc51,
above which almost every graph contains a single giant c
nected component being of orderO(N), with the remaining
components being small compared toN. This model yields
an asymptotic degree distribution that is Poissonian with
average degree given byc.

Many real-life networks, such as the internet, have b
shown to possess other types of degree distribution, so
times displaying a power law behavior over many orders
magnitude, ruling out the classical RG as the relevant mo
A number of alternative RG models have been suggeste
an attempt to yield random graphs with more general ty
of degree distribution, such as the desired power beha
Some of these models describe dynamical random gra
where the graphs arise as the result of a stochastic gro
process, such as randomly grown networks@4,5#, or scale-
free networks based on preferential attachment@6#. Others
focus on describing ensembles of random graphs with cer
given properties, without bothering about how they ca
about; a particularly interesting approach of this type, p
sessing a high degree of generality, is based on conside
random graphs of fixed order with a given arbitrary deg
distribution @7–10#.

In this paper, we will investigate a general class of spa
inhomogeneousRG models, by means of a straightforwa
generalization of the classical model to a situation wh
vertices may come in differenttypes, such that the probabil
ity for an edge depends on the types of its pair of termi
vertices. While this class of models inherits certain featu
from the homogeneous model—such as the existence
critical hypersurface in parameter space, beyond which
ymptotically almost every graph has a giant component—
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is capable of producing a wide class of asymptotic deg
distributions, among these distributions with power law b
havior.

This general class of models is shown to contain a num
of existing models as special cases, and can be used
general framework for the analysis of various RG models

The structure of this paper is as follows. In Sec. II, som
of the more salient features of the classical model are bri
reviewed, while our generalization is presented and analy
in Sec. III. In Sec. IV, a number of special cases are d
cussed, while Sec. V contains our conclusions.

II. THE CLASSICAL MODEL

Here we will briefly review some of the more promine
properties of the classical random graph in the largeN limit,
to pave the ground for the subsequent analysis of its ge
alization.

Definition 1. Let G(N,c), with c being a real positive
number, denote the ensemble of graphs of orderN.c, where
each edge is independently realized with probabilityp
5c/N. This ensemble has a critical value ofc51, above
which almost all graphs for largeN have a single large con
nected component — the giant component — with a fin
fraction of the vertices, while the remaining components
small.

A. Exposing connected components

The standard method to reveal the size distribution of
orders of components is to expose these components as
lows. Start with a single~random! vertex, reveal its neigh-
bors by following edges, then their neighbors, etc. Letnk be
the number of vertices exposed for the first time in stepk of
this process. The distribution ofnk , given the previous num-
bersn051,n1 , . . . ,nk21, becomes

P~nk!5S N2 (
l 50

k21

nl

nk

D ~12qnk21!nk~qnk21!N2(
l 50

k

nl,

~1!

whereq512c/N.
In the large N limit with a fixed c, P(nk) tends to

e2nk21c(nk21c)nk/nk!, and the process reduces to a Poiss
©2002 The American Physical Society21-1



-
hi

-

i

g

-

be

m

d
fo
s

ce

-

bu

gh
ve

R

th
ilit
x

o

rti-

n-
a

e

es,

m-

by a

e a

ting

y

ns

s
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nian branching tree modelB(c), with each vertex indepen
dently branching to a number of new vertices, where t
number is a Poissonian random variable with averagec. The
distribution pn over the ordern of the resulting tree is con
veniently analyzed in terms of the generating functionF(z)
5(npnzn, which must satisfy

F~z!5z exp@c~F~z!21!#. ~2!

This can be solved iteratively for eachz, andF(z) must be a
stable fixed point of the corresponding iterated map; it
easy to see that this impliesuF(z)u,1/ucu. For uzu<1, there
is a unique solution forF(z), reachable from the startin
point 0, given byF(z)5Ĉ(z)/c, whereĈ(z) is the unique
solution toxe2x5zce2c in the unit disk. Expanding the cor
responding inverse ofxe2x yields the exact resultpn
5nn21cn21e2nc/n!.

Particularly interesting is the result forz51, defining f
[F(1), which represents the total probability and might
expected to be 1, which is an obvious solution to Eq.~2! for
z51. Indeed, forc,1, this solution is stable, but forc
.1, it becomes unstable, and another fixed point beco
the attractor, given byf 5 ĉ/c, whereĉ is the unique solution
to ĉe2 ĉ5ce2c in the interval@0,1#.

Thus, for c,1 the branching model is subcritical, an
always terminates after a finite number of steps, while
c.1 it is supercritical — the deficit in total probability i
due to a finite probability 12 f that the ordern of the gen-
erated tree becomes infinite, i.e., that the branching pro
never terminates.

For a large but finiteN, this corresponds to all compo
nents being small, i.e.o(N), for c,1, while for c.1 there
exists a single giant component of order;N(12 f ) with the
remaining components being small, having an order distri
tion similar to that obtained for the complementaryc value
ĉ.

III. GENERALIZATION TO INHOMOGENEOUS
RANDOM GRAPHS

The classical RG model can be generalized in a strai
forward way to inhomogeneous graphs by assuming that
tices can come in differenttypes iP$1, . . . ,K%. This enables
us to consider a very general class of inhomogeneous
models, to be referred to as IRG:

Definition 2.Given a positive integer K, aK-dimensional
vector r5$r 1 , . . . ,r K% of positive probabilities summing to
1, and a symmetricK3K matrix c with non-negative ele-
mentsci j , let G(N,K,r ,c) denote the ensemble of graphsG
of orderN, defined as follows.

~i! Each vertex is independently assigned a typei
P$1, . . . ,K% with probability r i .

~ii ! Independently for each unordered pair of vertices,
corresponding undirected edge is realized with probab
pi j 5ci j /N, where( i , j ) is the corresponding pair of verte
types.

Remark 1.An asymptotically equivalent alternative is t
fix the number of vertices of each type to certain valuesNi
06612
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'Nri , and possibly also the number of edges between ve
ces of typesi , j to fixed valuesEi j '(12d i j /2)ci j NiNj /N.

A. Revelation of a connected component

In analogy to the classicalG(N,c) model, the model
G(N,K,r ,c) can be analyzed by recursively revealing a co
nected component by exploring neighbors, starting from
single vertex. Letni ,k be the number of new vertices of typ
i revealed in thekth stage of the revelation~so ni ,05d i ,i 0

,

with i 0 the type of the starting vertex!. Given the number of
revealed vertices of different types in the previous stag
ni ,k obeys the conditional distribution

P~ni ,k!5S Ni2 (
l 50

k21

ni ,l

ni ,k

D S 12)
j

qi j
nj ,k21D ni ,k

3S)
j

qi j
nj ,k21D Ni2(

l 50

k

ni ,l

, ~3!

where qi j 512pi j 512ci j /N'exp(2cij /N). This expres-
sion can be simplified in different domains.

B. Small components and the branching process approximation

As long as the order of the revealed part is small as co
pared toN, we can approximate Eq.~3! by the Poisson dis-
tribution

P~ni ,k!'e2(
j

r i ci j nj ,k21

S (
j

r ici j nj ,k21D ni ,k

ni ,k!
. ~4!

This corresponds to approximate the revelation process
Poissonian random branching process.

For the distributionP(n) of the total numbern of gener-
ated vertices stating from a random vertex, we can defin
generating function F(z)5(nP(n)zn. Since the distribution
will depend on the type of the initial vertex,F must be writ-
ten as the weighted average of the corresponding genera
functionsFi(z) for the distributionsPi(n) conditional on the
initial type i, i.e.,

F~z!5(
i

r iFi~z!, with Fi~z!5(
n

Pi~n!zn. ~5!

The vectorF having the differentFi as components satisf
the coupled set of equations

Fi~z!5z expS (
j

ci j r j„F j~z!21…D , ~6!

which is the inhomogeneous version of Eq.~2!.
Remark 2.A more elaborate set of generating functio

F̃ i(z1 , . . . ,zK)5(nPi(n)) j zj
nj could be defined, using a

distinct variablezi for each typei, with ni the total number
of revealed vertices of typei. These would obey equation
1-2
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obtained by replacing the ‘‘z’’ after the equal sign in Eq.~6!
by ‘‘ zi . ’’ Here we do not care about the detailed type co

tent, and the simpler version,Fi(z)5F̃ i(z, . . . ,z), will suf-
fice.

Interpreting Eq.~6! as aK-dimensional iterated map~re-
place ‘‘5 ’’ by ‘‘ ª ’’ !, the proper solution is the stable fixe
point reached from the starting pointF50. Particularly in-
teresting is the result forz51, so let f i5Fi(1), expressing
the probability that the branching process will termina
conditional on the type of the starting vertex, and let t
unconditional counterpart be denoted byf 5( j r j f j5F(1).
The f i satisfy the coupled set of equations

f i5expS (
j

ci j r j~ f j21! D , ~7!

with a naive solutionf51, the stability of which can be
analyzed by means of linearization of Eq.~7! aroundf51,
yielding $ci j r j% as the relevant matrix. This is all we need
order to pin down the appearance of the giant, as well a
asymptotic size, and we state the result without proof~it
follows by analogy to the corresponding result for the cl
sical model!:

Theorem 1.~A! The modelG(N,K,r ,c) is subcritical if the
eigenvalues of the matrix$ci j r j% are all less than one in
absolute value; the graphs then a.a.s. possess no giant
ponent.~B! When some eigenvalue is larger than one,
model is supercritical, and the graphs a.a.s. possess a
component; its numberni of vertices of typei asymptotically
satisfiesni /N;r i(12 f i), where the f i corresponds to a
stable solution of Eq.~7!.

Here, a.a.s. stands forasymptotically almost surely, i.e.,
with probability →1 asN→`.

Remark 3.It appears natural to require in addition thatc
cannot be block diagonalized; otherwise ergodicity would
broken, and the graph would trivially decompose into d
tinct subgraphs, which could be treated separately.

In the supercritical case, the generating functionsFi(z)
can berenormalizedwith f i , to yield generating functions
for the finite ~nongiant! component part. Let F̂ i(z)
5Fi(z)/ f i . ThenF̂ is a stable solution of

F̂ i~z!5z expS (
j

ci j r j f j~ F̂ j21! D , ~8!

with F̂(1)51. This describes a subcritical branching proce
with renormalized parametersr̂ i5r i f i /r•f and ĉi j 5ci j r•f.
For a finiteN, we must haveN̂;Nr•f, and we see that this
conservesp̂i j 5 ĉi j /N̂5pi j ; thus, the renormalized model i
simply the naive restriction of the original one to the sub
of vertices outside the giant component.

C. Large components and the deterministic approximation

When the giant component is revealed, another appr
mation can be made to Eq.~3!. Once the number of reveale
vertices become ofO(N), the distribution ofni ,k becomes
sharply peaked around its average, due to a factor ofN ap-
06612
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pearing in the exponent. As a result, the fluctuations beco
negligible, yielding a deterministic iterative equation for th
consecutive revealed numbers. In terms of the fractiongi ,k

512( l 50
k ni ,l /(Nri) of all vertices of typei not yet revealed

after stepk, this yields

gi ,k5gi ,k21 expS (
j

ci j r j~gj ,k212gj ,k22! D , ~9!

revealing the conserved quantities

m i[gi ,k expS (
j

ci j r j~12gj ,k21! D . ~10!

The values ofm i must be;1, since their values can onl
change in an earlier stage when the number of revealed
tices is still small, but theng;1; thus, in the largeN limit
we can safely assumem i51. The two-step recursion~9! re-
duces to a one-step recursion, taking the formgi ,k
5e( j ci j r j (gj ,k2121), which can be seen as iterating the ma

gi→expS (
j

ci j r j~gj21! D ~11!

until a stable fixed point is reached. If the model is subcr
cal, this is given by the trivial fixed pointgi51, whereas for
a supercritical model a nontrivial fixed point withgi,1 re-
sults, signalling the existence of a giant component conta
ing a fraction 12gi of the vertices of typei.

Eq. ~11! is identical to Eq.~7!, which was derived in the
limit of small numbers of revealed vertices; thus, we ha
established the same set of equations in two different lim

Remark 4.A third, heuristic way of estimating the size o
the giant component is as follows. Suppose the giant c
tains a fractionni of the vertices of typei. Then we can
estimate its neighborhood, i.e., the set of vertices conne
to at least one vertex in the giant~which of course must be
the giant itself!, as follows, based on the rather bold assum
tion that the edge probabilities do not depend on whether
or both of its terminal vertices are in the giant: The to
number of vertices of typei is Nri . For each of these, the
probability of not being connected to any of the vertices
the giant is exp@2(jcijnj /N). Thus we can expect a numbe
Nri(12exp(2(jcijnj /N)# of vertices of typei in the neigh-
borhood, i.e., in the giant. Writingni as Nri(12gi), we
recover Eq.~11!, in spite of the bold assumptions involved

D. Extended type spaces

While we have assumed a finite number of typesK, de-
fining the type spaceT5ZK , the above results should b
more or less directly extendable to models where the t
spaceT is a denumerable infinite set, or even a continuo
manifold, under some general conditions yet to be precis
determined.

Definition 3.For a given type spaceT, with a normalized
measurer on T, and a given non-negative symmetric fun
tion c~x,y! on T 2, defineG(N,T,r ,c) as the ensemble of RG
of order N, where each vertex is independently assigne
1-3
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type xPT according tor (x), and for each vertex pair th
corresponding edge is independently chosen with probab
c(x,y)/N, with (x,y) the corresponding pair of types.

For thedenumerablecase,T5Z1 , it appears natural to
require the asymptotic degree averagesci j , or at least the
total averagesCi5( j 51

` ci j r j , to be uniformly bounded. Fo
cases where the elements ofc are unbounded, an alternativ
is to regularize pi j for finite N by using pi j 512exp
(2cij /N) instead of the unboundedci j /N.

Also, reasonable care may have to be taken thatc is suf-
ficiently ergodic. Lett i j be 0 if ci j 50, 1 otherwise. The
matrix t then describes a graph in type space, witht i j 51
corresponding to the existence of the edge (i , j ). Then, suf-
ficient ergodicity could e.g. mean that this graph should h
a finite diameter, i.e. a uniformly bounded distance betw
vertex pairs.

For the case of acontinuoustype spaceT, similar care
must be taken. In addition, some kind of continuity co
straint seems appropriate, both onc and r .

Note that a continuousT allows for a continuousrep-
arametrization invariance. Thus, for the case ofT5R, as-
sumef to be a strictly increasing, continuously differentiab
mapping ofR to itself. Then the model defined byĉ(x,y)
5c„f (x), f (y)… and r̂ (x)5r „f (x)…f 8(x) is completely
equivalent to that withc(x,y) andr (x). Thus,r (x) could be
transformed to any desirable normalized distribution onR.
In particular, it could be transformed to the uniform distrib
tion on the unit interval, yielding a kind of standard repr
sentation of the model. For higher-dimensional manifol
things are more complicated, and it appears difficult to
vise a universal standardization procedure.

A precise determination of feasibility conditions for e
tended type spaces will be the subject of future work.

E. Degree distributions

Many properties~but not all!! of a graph ensemble ar
reflected in its asymptotic degree distribution. In IRG, t
asymptotic degree distributionpm is determined byr andc,
and given simply as the weighted average of the ty
specific degree distributionspmu i , being Poissonian with an
averageCi defined byCi5( j ci j r j . The result is

pm5(
i

r i exp~2Ci !
Ci

m

m!
, ~12!

with the associated generating function

H~z![(
m

pmzm5(
i

r i exp@Ci~z21!#. ~13!

This puts a limitation on the possible degree distributio
that can be obtained within IRG: It must be possible to wr
the distribution as a positive linear combination of Pois
nians, i.e.,

pm5
1

m! E0

`

cme2cp~c!dc, ~14!
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wherep(c)>0 describes an,a priori arbitrary, distribution
of type-specific Poissonian degree averagesc5Ci , assum-
ing the possibility of a continuum of types. This is a kind
smoothness constraint. In particular, it implies

pm
2 <

m11

m
pm11pm21 , ~15!

for eachm.0. While this excludes, e.g., random regul
graphs where the degree is fixed, it does allow for a w
class of degree distributions, such as distributions with
power tail, pm}m2a for large m, by letting p(c) having a
similar power tail,p(c)}c2a for largec.

Note that a particular model in IRG isnot determined
solely by the degree sequence, which depends onci j only
through the averageCi5( j ci j r j . This is in contrast to a
class of recently considered models@7–10#; such models de-
fine a particular subclass of IRG, however, as will be sho
below.

IV. SPECIAL CASES OF INTEREST

For K51, of course the known properties of the classic
RG model is recovered. Below we will consider a few le
trivial examples.

A. Random bipartite graph

Assuming two distinct vertex types, i.e.K52, a simple
ensemble of random bipartite graphs results from the cho

c5S 0 a

a 0D . ~16!

With an arbitrary choice of type distributionr5(r 1 ,r 2), this
yields for the asymptotic generating functionF(z)
5(F1 ,F2) the equations

F1~z!5z exp$ar2@F2~z!21#%, ~17a!

F2~z!5z exp$ar1@F1~z!21#%. ~17b!

For z51, this yields

f 15exp@ar2~ f 221!#, f 25exp@ar1~ f 121!#, ~18!

yielding the critical value ofa asac51/Ar 1r 2. In the sym-
metric case ofr 15r 251/2, we haveac52, and f 15 f 25 f
satisfying f 5exp@a/2( f 21)#.

In a similar way, ensembles of randomK-partite graphs
can be defined, which can be seen as generated by the
plete graphKK . Similarly, ensembles of random graph
based on an arbitrary generating graph can be defined, wc
proportional to the incidence matrix for the generating gra
A nice twist results from using a random graph as a gene
tor.
1-4
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B. Rank-1 c matrix

A particularly interesting special case results whenc has
the factorized formci j 5CiCj /C̄, whereCi.0 can be inter-
preted as a connection tendency for vertices of typei, while
C̄5( i r iCi .

Writing the asymptotic generating function asF(z)
5( i r iFi(z), we get forFi(z) in this case

Fi~z!5z expS Ci(
j

r jCj„F j~z!21…

C̄
D , ~19!

which can be reduced to a single equation for the funct
G(z)5( i r iCiFi(z)/C̄, reading

G~z!5z(
i

r iCi exp@Ci„G~z!21…#/C̄. ~20!

In terms of the generating functionH(z) for the asymptotic
degree distribution, Eq.~13!, this can be written as

G~z!5z
H8„G~z!…

H8~1!
, ~21!

and in terms ofG(z) we have

F~z!5zH„G~z!…. ~22!

For z51 in particular, we get forg5G(1) the equation

g5
H8~g!

H8~1!
, ~23!

and linearization around the trivial solutiong51 yields sta-
bility for H9(1)/H8(1),1, corresponding to the model be
ing subcritical for ^C2&,^C&, which is equivalent tô m2&
,^2m& in terms of moments of the degree distribution. W
c restricted to have rank 1, the resulting models are asy
totically equivalent to models from a superficially very d
ferent class of random graphs that has recently attra
some attention@7–10#. There, a random graph ensemb
based on an arbitrary asymptotic degree distributionpm is
defined for a finite orderN by randomly selecting a membe
from the set of graphs with a given degree sequence, s
that the number of vertices with degreem is approximately
Npm .

Also for such a model, the recursive exposition of a co
nected component asymptotically yields a well-defin
branching process, apparently very different from the Po
sonian ones obtained for IRG. Here, the inital vertex is
signed a random degreem according topm , and subse-
quently branches tom daughter vertices. Each new vertex
independently assigned a degreen.0, distributed according
to npn /(mmpm ~consistent with the assumption that th
asymptotic probability of connecting to a particular vertex
proportional to its degree!, and then branches ton21 daugh-
ters ~since one of its edges is already used!.
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The asymptotic generating functionF(z)5(kPkz
k for the

resulting order distributionPk then satisfies the equation

F~z!5z(
m

pmG~z!m, ~24!

expressing the choice of the initial degreem. Here,G(z) is
the edge generating function, which satisfies

G~z!5z

(
m

mpmG~z!m21

(
m

mpm

, ~25!

expressing the choice of the daughter’s degreem, and its
branching tom21 edges.

These are nothing but Eqs.~22! and ~21! in disguise,
showing the complete asymptotic equivalence of the t
models, despite the superficial differences; indeed, the c
ria ^m(m22)&,0 for subcriticality derived above are i
complete accordance with the results of Ref.@8#.

C. Dynamical random graph with finite memory

The last example is given by a recently proposed clas
dynamical random graphs@5# with memory, where a graph is
produced starting from a single node according to the co
bination of three random processes in continuous time,
Poissonian:

~1! For each existing vertex, new, initially isolated, ver
ces are added at a rateg.

~2! For each existing vertex, new random edges are ad
at a ratel, connecting it to random existing vertices.

~3! Each existing edge is deleted at a ratem.
It is easy to see that the expected order of the graph gr

with time t asegt, and after an initial transient, vertices a
only distinguished by their age, and we are led to conside
inhomogeneous model with a continuum of vertex typesT
5@0,̀ @ , given by vertex age.

1. Asymptotic properties

The probability density for agesx is asymptotically given
by

r ~x!5ge2gx. ~26!

For each pair of vertices, the probability of a connection
independent of the existence of other connections, and
pends on the agex of the youngest vertex involved, an
amounts to, at timet, p(x)5(2l/g2m)(e(g2m)x21)e2gt.
We obtain

c~x,y!5
2l

g2m
~e(g2m)min(x,y)21!, ~27!

which seems feasible enough:c is ergodic, continuous and
although c(x,y) is not uniformly bounded, the averag
1-5
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C(x)[*c(x,y)r (y)dy5(2l/m)(12e2mx) is ~at least for
m.0). Thus, we are lead to consider the spectrum of
integral kernel

G~x,y!5
2gl

m2g
~12e2(m2g)min(x,y)!e2gy, ~28!

which is recognized as being proportional to the Gree
function ~i.e., a kernel representation of the formal opera
inverse! for a particular differential operatorL on R1 , given
by

L52
1

2gl
emx

]

]x S ]

]x
1m2g D , ~29!

with boundary conditionsf (0)50, andf (x)e(m2g)x/2 grow-
ing at most as a power ofx asx→`. Criticality results when
the ground state ofL has eigenvalue 1.

With a finite memory, m.0, the eigenvalue equation fo
L is a disguised version of Bessel’s equation of orderg/m
21 in the variabley5A8lge2mx/2/m, and criticality results
when the first positive zeroXg/m21 of Jg/m21 is given by
A8lg/m, i.e., for l5m2Xg/m21

2 /8g.
In the special case ofinfinite memory, m50, the model

reduces to arandomly grown network@4#, and yields

L52
1

2gl

]

]x S ]

]x
2g D , ~30!

with eigenfunctions of the formegx/2sin(vx) with eigenvalue
(g214v2)/8gl, yielding the ground state valueg/8l for
v50, and criticality forl5g/8.

The above results are all consistent with those obtaine
Refs.@4,5# on the phase structure for these models.
,
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V. CONCLUSION

We have investigated a generalization of the classical
mogeneous model of sparse random graphs, obtained by
posing a type structure on the vertices. This yields a v
general class of inhomogeneous random graph models,
the asymptotic degree distributions are not restricted to P
sonians, but allow for various types of behavior, within ce
tain limitations. Thus, e.g., power behavior is possible, wh
a fixed degree~regular graph! is ruled out.

The models in this class arenot determined by the degre
distribution alone, but contains an infinity of models for ea
possible distribution, in contrast to a recently conside
class of models based on a given degree distribution. In
estingly enough, a relation does exist, since such models
shown to result in a special case of the present approac

In other special cases it describes the asymptotic st
properties of certain models of evolving random graphs, s
as randomly grown networks, and dynamical graphs w
memory.

Only certain aspects of the approach have been covere
this paper, and a more detailed analysis, e.g. of the feasib
conditions for extended type spaces, will be the subjec
forthcoming work, as will be the investigations on furth
extensions of the approach e.g. to directed graphs.
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